
the Realm story

From IL Weaving to
Source Generators

Ferdinando Papale | .NET Developer | @papafeit

Driving IT

The context:
“Code generation” in

.NET

IL Weaving

.NET code is compiled to IL
(Intermediate Language) first, then
converted to machine code at runtime

IL is similar to Java bytecode,
“high-level assembly”

IL can be modified with Weaving

Weaving happens after compilation

Possible to modify existing code in any
way, “feels like magic”

Useful to generate repetitive or
optimised code

public class Person

{

 public string Name { get; set; }

}

.method public hidebysig specialname

 instance string get_Name () cil managed

{

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: ldfld string Person::'<Name>k__BackingField'

 IL_0006: ret

} // end of method Person::get_Name

.method public hidebysig specialname

 instance void set_Name (string 'value') cil managed

{

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: ldarg.1

 IL_0002: stfld string Person::'<Name>k__BackingField'

 IL_0007: ret

} // end of method Person::set_Name

Source code IL

PropertyChanged.Fody

Source
Generators

Compiler feature introduced with
.NET 5

“Plugs” into the compilation pipeline

Source Generators are passed a
compilation object that can be
analyzed

Source Generators emit source code

Source generation happen during
compilation

Only additive

Useful to generate repetitive or
optimised code

System.Text.Json

Realm is an
object-oriented and

cross-platform
database

The past
(IL Weaving)

public class Person : RealmObject

{

 [PrimaryKey]

 public Guid Id { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 public IList<Dog> Dogs { get; }

}

public class Person : RealmObject

{

 public string Name

 {

 //Simplified

 get => GetValue("Name");

 set => SetValue(“Name”, value);

 }

 //…

}

Defined model Compiled model

.method public hidebysig specialname

 instance string get_Name () cil managed

{

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: ldfld string
Person::'<Name>k__BackingField'

 IL_0006: ret

} // end of method Person::get_Name

.method public hidebysig specialname

 instance string get_Name () cil managed

{

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: ldfld bool RealmObject::IsManaged

 IL_0006: brtrue.s IL_000f

 IL_0008: ldarg.0

 IL_0009: ldfld string Person2::_name

 IL_000e: ret

 IL_000f: ldarg.0

 IL_0010: ldstr "Name"

 IL_0015: call instance string
RealmObject::GetValue(string)

 IL_001a: ret

} // end of method Person::get_Name

Defined model (IL) Weaved model (IL)

IL Weaving
drawbacks Not readable

IL code is difficult to read and to reason
about

Difficult to extend
Weaver requires specific knowledge and a
lot of trial and error

Black box
Changes to IL are “not visible” to final user

Not debuggable
It’s not possible to step into the weaved
code

The future
(Source Generators)

Broader re-think of
the SDK associated
with the move to

Source Generators

public class Person : RealmObject

{

 [PrimaryKey]

 public Guid Id { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 public IList<Dog> Dogs { get; }

}

public partial class Person : IRealmObject

{

 [PrimaryKey]

 public Guid Id { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 public IList<Dog> Dogs { get; }

}

Classic model New model

The bright side

Readable and Debuggable
Generated code can be inspected and
debugged

Easy to work with
The generated code is just “plain” code,
easy to reason with

Extensible
Allow us to introduce support for new
features much faster (nullability…)

Tooling
There are various tooling issues appearing
while working with Source Generators

No central “knowledge base”
Lots of googling

Performance
Source generators can run multiple times,
even with no changes

Only Additive
Existing code cannot be modified

The less bright side

IL Weaving is still there 😓

class Person : RealmObject

{

 [PrimaryKey]

 public Guid Id { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 public IList<Dog> Dogs { get; }

}

Weaving

partial class Person : IRealmObject

{

 [PrimaryKey]

 private Guid _id;

 private string _name;

 private int _age;

 private IList<Dog> _dogs;

}

SG

partial class Person : IRealmObject

{

 [PrimaryKey]

 public Guid Id { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 public IList<Dog> Dogs { get; }

}

SG + Weaving

Public partial class Person : IRealmObject

{

 [PrimaryKey]

 public Guid Id { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 public IList<Dog> Dogs { get; }

}

public partial class Person : IRealmObject

{

 public string Name

 {

 get => Accessor.Name;

 set => Accessor.Name = value;

 }

 //…

}

New model Compiled model

Status and
Future
Work

In the pipeline for about 6 months

Realm.SourceGenerator has
just been published in beta

Planning to support nullability

Planning to add incremental
generator

Completely remove IL Weaving (?)

Conclusion

Code generation is useful to hide
complexity in the .NET Realm SDK

IL Weaving is powerful but
difficult

Source Generators are a good
alternative

They have their own
quirks/limitations

The switch was worth it, it will
allow to introduce new features in
an easier way

Thank you for
your time.

